
MATH1520 University Mathematics for Applications Fall 2021

Chapter 11: Ordinary Differential Equations

Learning Objectives:
(1) Solve first-order linear differential equations and initial value problems.
(2) Explore analysis with applications to dilution models.

1 Ordinary Differential Equations

Definition 1.1. An ordinary differential equation (ODE) is an equation involving one or
more derivatives of an unknown function y(x) of 1-variable. A differential equation for a
multi-variable function is called a “partial differential equation” (PDE).

The order of an ordinary differential equation is the order of the highest derivative that
it contains.
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Example 1.2. 1. y y
00 + e

y = x
2 ln y0 is a second order ODE.

2. f2(x)y00 + f1(x)y0 + f0(x)y = g(x), f2(x) 6= 0. This is a second order linear ODE in the
function y(x). g(x) is called the inhomogeneous term; the left hand side of the equation
is called the homogeneous part of the this linear ODE; f2(x)y”+ f1(x)y0+ f0(x)y = 0 is
called the associated homogeneous linear ODE of the linear ODE given above. A linear
ODE with inhomogeous term 0 is called a homogeneous linear ODE.

3. The ODE in 1. is non-linear. The second ODE in Example 1.1 is linear with inhomoge-
neous term e
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Remark.
Pn

i=1 aixi = b, where ai, b are constants (“coefficients”) is said to be a linear
equation in the variables x1, . . . , xn. b is called the inhomogeneous term, and the equation is
said to be homogeneous when b = 0. For differential equations, functions of x play the roles
of “coefficients” a1, . . . , an, b, and y

(i), i = 0, 1, . . . play the roles of “variables”.

Definition 1.2. A function y = y(x) is a solution of an ordinary differential equation on an
open interval if the equation is satisfied identically on the interval when y and its derivatives
are substituted into the equation.

Remark. The solution might not exist; it might not be unique.

Example 1.3. y(x) = e
2x is a solution to the ODE y

00 � 4y0 + 4y = 0. y(x) = 4e2x is another
solution.

Example 1.4. Find the solution of d
dxy = 4x, or equivalently, y0(x) = 4x.

Solution. Integrate both sides: y(x) =
Z

4x dx = 2x2 + C, where C is an arbitrary constant.

Then, y = 2x2 + C, C 2 R is called general solution of y0(x) = 4x.

Choose any C, e.g. C = 5, we get a particular solution y = 2x2 + 5. ⌅

For a first-order equation, the single arbitrary constant can be determined by specifying
the value of the unknown function y(x) at an arbitrary x-value x0, say y(x0) = y0. This is
called an initial condition, and the problem of solving a first-order equation subject to an
initial condition is called a first-order initial-value problem.

Example 1.5. (
y
0(x) = 4x

y(5) = 20

is an initial value problem.

General solution y = 2x2 + C should satisfy the initial condition y(5) = 20, i.e.

20 = 2(5)2 + C ) C = �30.

So, the unique solution to the initial value problem is y = 2x2 � 30.

Remark. We saw that the general solution to a first order ODE typically involves an inde-
terminate constant C. More generally, the general solution to an n-th order ODE typically
involves n indeterminate constants. An initial value problem for an n-th order ODE thus has
n initial conditions, often of the form y

k(x0) = ak, k = 0, 2, . . . , n� 1, where x0 and ak are
constants.

Solving a general ODE is typically very difficult, and there is no general algorithm for
doing so. We shall discuss only some particularly simple cases.

y
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2 Separation of Variables for first order ODEs

Definition 2.1 (Separable Equation).

dy

dx
=

g(x)

h(y)

is called a separable equation.

For those separable differential equations, we can formally rewrite them in the form
(“separation of variables”–each side involve one single variable)

“h(y) dy = g(x) dx” (1)

Integrate both sides with respect to x and y respectively, we have

Z
h(y) dy =

Z
g(x) dx (2)

or, equivalently

H(y) = G(x) + C (3)

where H(x), G(x) denote antiderivatives of h(x) and g(x) respectively, and C denotes
a constant.

Example 2.1. Solve

(1)
dy

dx
=

2x

y2
(2)

8
<

:

dy

dx
=

2x

y2
,

y(0) = 1.

Solution. (1) Separating variables and integrating yields

y
2
dy = 2xdx

Z
y
2
dy =

Z
2xdx

or
1

3
y
3 = x

2 + C

or, equivalently
y = 3

p
3(x2 + C)

fhiyjddfdx-fgcx.de
Hcg) = fhcgjdg

= Gad -1C

F



Chapter 11: Ordinary Differential Equations 4

(2) The initial condition y(0) = 1 requires that y = 1 when x = 0. Substituting these values
into our solution yields C = 1

3 (verify). Thus, a solution to the initial-value problem is

y =
3
p

3x2 + 1.

⌅

Example 2.2. Solve
dy

dx
= �4xy3

Solution. (1) For y 6= 0, we can write the differential equation as

1

y3

dy

dx
= �4x

Separating variables and integrating yields

1

y3
dy = �4xdx

Z
1

y3
dy =

Z
�4xdx

or
� 1

2y2
= �2x2 + C

or, equivalently

y
2 =

1

4x2 � 2C

(2) Constant function y = 0 also satisfies the differential equation, since

00 = �4x · (0)3

Therefore, the solution is y2 = 1
4x2�2C or y = 0.

⌅

Remark. For y0 = g(x)h(y), divide both sides by h(y) ) dy
h(y) = g(x)dx.

Do not miss the particular constant solution y = a that makes h(a) = 0.

Example 2.3. Solve y
0 = 3x2y.

plug in ✗ =D , 9=1

Ig = o
>

+ c ⇒ c- 1-3

-
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Solution. (1) For y 6= 0, it can be written as
dy

y
= 3x2 dx

so Z
dy

y
=

Z
3x2 dx

ln |y| = x
3 + C1

|y| = e
x3 · eC1 , C1 2 R

y = ±e
x3 · eC1 , C1 2 R

y = C2e
x3
, C2 6= 0

(2) Check: y = 0 is also a solution.

Therefore, the general solution is

y = Ce
x3
, C 2 R

⌅

Example 2.4. Find a curve y = y(x) on the x� y plane that passes through (0, 2) and whose
tangent line at a point (x, y) has slope 2x3/y2.

Solution. Since the slope of the tangent line is dy/dx, we have

dy

dx
=

2x3

y2

which is separable and can be written as

y
2
dy = 2x3dx

so Z
y
2
dy =

Z
2x3dx or

1

3
y
3 =

1

2
x
4 + C

It follows from the initial condition that y = 2 if x = 0. Substituting these values into
the last equation yields C = 8

3 (verify), so the equation of the desired curve is

1

3
y
3 =

1

2
x
4 +

8

3
.

⌅

Y (a) =3

1-323=1-2.0
"

-1C



Chapter 11: Ordinary Differential Equations 6

3 First-Order Linear Differential Equations

Recall: A 1st order linear ODE has the general form a(x)y0 + b(x)y = c(x), where a(x) 6= 0.
We can always divide the whole equation by a(x) and consider equivalently the equation

y
0 +

b

a
y =

c

a
wherever a(x) 6= 0. So we may restrict to equations of the form

dy

dx
+ p(x) y = q(x). (4)

(1) If q(x) = 0 (homogeneous case),

dy

dx
+ p(x)y = 0, separable equation!

(2) For general q(x), use integrating factors!

Idea: multiply the differential equation by a factor µ(x), then

µ(x)
dy

dx
+ µ(x)p(x)y = µ(x)q(x)

Hope we can rewrite LHS in the form of
d

dx

�
· · ·

�
, then the differential equation can be

written as
d

dx

�
· · ·

�
= µ(x)q(x) separable equation!

Check: µ(x) = e

R
p(x) dx works!

d

dx
(µy) = µ

dy

dx
+

dµ

dx
y (product rule)

= µ
dy

dx
+ µp(x)y (chain rule)

= µq (apply equation)

So, µy =
R
µq dx and

y =
1

µ

Z
µq dx

Remark. There are infinitely many choices for µ(x) = e

R
p(x) dx (it involves an indefinite

integral). Just pick any one!

÷, = - pad g.

ICH is an anti derivative

ddtf = up off
n =ER

, is another antiderivative
of p.

Is=P+C

M
,
= eh = ef.ec

= EN.

= in
,
/mad✗ = -edµ /Eu 9) dx
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The Method of Integrating Factors

Step 1. Calculate the integrating factor
µ = e

R
p(x)dx

.

Since any µ will suffice, we can take the constant of integration to be zero in this step.

Step 2. Multiply both sides of (4) by µ and express the result as

d

dx
(µy) = µq(x).

Step 3. Integrate both sides of the equation obtained in Step 2 and then solve for y. Be sure to
include a constant of integration in this step.

Example 3.1. Solve the differential equation

dy

dx
� y = e

3x
.

Solution. We have a first-order linear equation with p(x) = �1 and q(x) = e
3x .

µ = e

R
p(x)dx = e

R
(�1)dx = e

�x
.

Next we multiply both sides of the given equation by µ to obtain

e
�x dy

dx
� e

�x
y = e

�x
e
3x

which we can rewrite as
d

dx
[e�x

y] = e
2x
.

So
e
�x

y =
1

2
e
2x + C

Finally, solving for y yields the general solution

y =
1

2
e
3x + Ce

x
.

⌅

Exercise 3.1. Solve y
0 + 2xy = 4x.

Ans: y = 2 + Ce
�x2 .

y
/
+ py =3

P= -1 , q=E×

P

④
q

µ = ef2×d× = ex
>

¥Cµn)= MY' + HMY = É4x
Ktu = ×

?

My = f4xÉdx= f. zelda du = 2x DX

= zei-c-zet-c-jy-z-c.EE
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Example 3.2. Solve the initial-value problem

x
dy

dx
� y = x, y(1) = 2.

Solution. By dividing both sides by x to put the ODE in the standard form y
0 + py = q, we

have
dy

dx
� 1

x
y = 1 when x 6= 0. (5)

We shall look for solutions y with domain R\{0} = (�1, 0) [ (0,1).

In this problem, p = �1x; so

µ = e

R
p(x) dx = e

�
R 1

x dx = e
� ln |x| =

1

|x| .

Multiplying both sides of Equation (5) by this integrating factor yields

1

x

dy

dx
� 1

x2
y =

1

x

or
d

dx


1

x
y

�
=

1

x

Therefore
1

x
y =

Z
1

x
dx = ln |x|+ C

from which it follows that
y = x ln |x|+ Cx. (6)

By y(1) = 2, we have C = 2 (verify) on the interval (0,+1) 3 1. So the general solution
of the initial-value problem is

y =

(
x lnx+ 2x when x > 0;

x ln (�x) + Cx when x < 0

for an arbitray constant C. ⌅

Exercise 3.2. Solve the initial-value problem

x
dy

dx
� y = x, y(�1) = 2, y(1) = 2.

HE>

,

°%

7¥ , initial condition

when ✗ > 0

plugin ✗4,5-2, 2=1 . but + C. I ⇒ C- 2

has a unique solution .
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4 Modeling with ODE

Example 4.1 (Mixing Problem). At time t = 0, a tank contains 4 lb of salt dissolved in 100
gal of water. Suppose that brine containing 2 lb/gallon of salt is pumped into the tank at a
rate of 5 gal/min. At the same time, that the well-mixed solution is drained from the tank at
the same rate. Find the amount of salt in the tank after 10 minutes.

Solution.

Let y(t) = amount of salt (lb) at time t.
y(0) = 4 lb.

Aim: y(10) = ?

Key: How y(t) changes? or,
dy

dt
=? lb/min.

We always have
dy

dt
= rate in � rate out.

where rate in is the rate at which salt enters the tank and rate out is the rate at which
salt leaves the tank.

By the formula: mass = volume ⇥ concentration , we have

rate in = (2 lb/gal ) · (5 gal/min ) = 10 lb/min.

rate out =

✓
y(t)

100
lb/gal

◆
· (5 gal/min ) =

y(t)

20
lb/min.

Therefore, we have an initial first order linear ordinary differential equation
8
><

>:

dy

dt
= 10� y

20
or

dy

dt
+

y

20
= 10

y(0) = 4.

-

4 8aYmin

Vlt) = volume

of the solution in
the tank

'

= too -15T-4T

( ¥1
, )

4 = ¥+ = look

F-E. 8=10
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The integrating factor for the differential equation is

µ = e

R
(1/20)dt = e

t/20
.

If we multiply the differential equation through by µ, then we obtain

d

dt
(et/20y) = 10et/20

e
t/20

y =

Z
10et/20dt = 200et/20 + C

y(t) = 200 + Ce
�t/20

.

Substituting t = 0 and y = 4 into y(t) and solving for C yields C = �196, so

y(t) = 200� 196e�t/20
.

At time t = 10, the amount of salt in the tank is

y(10) = 200� 196e�10/20 ⇡ 81.1 lb.

⌅

Remark. After sufficiently long time, as t ! +1, y(t) ! 200 lb.

Example 4.2. Modelling a pandemic: (SIR model)

https://www.youtube.com/watch?feature=share&v=Qrp40ck3WpI&app=desktop

Note: the number of infected grows exponentially in the initial stages (no intervention).

Coronavirus Cases Live Updates:

https://www.youtube.com/watch?feature=share&v=Qrp40ck3WpI&app=desktop

4--200-1
Ce°




